3.397 \(\int (a+b \sec ^2(e+f x))^{3/2} \tan ^2(e+f x) \, dx\)

Optimal. Leaf size=166 \[ \frac{\left (3 a^2-6 a b-b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{8 \sqrt{b} f}-\frac{a^{3/2} \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{f}+\frac{b \tan ^3(e+f x) \sqrt{a+b \tan ^2(e+f x)+b}}{4 f}+\frac{(5 a+b) \tan (e+f x) \sqrt{a+b \tan ^2(e+f x)+b}}{8 f} \]

[Out]

-((a^(3/2)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/f) + ((3*a^2 - 6*a*b - b^2)*ArcTanh[
(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(8*Sqrt[b]*f) + ((5*a + b)*Tan[e + f*x]*Sqrt[a + b + b
*Tan[e + f*x]^2])/(8*f) + (b*Tan[e + f*x]^3*Sqrt[a + b + b*Tan[e + f*x]^2])/(4*f)

________________________________________________________________________________________

Rubi [A]  time = 0.364926, antiderivative size = 166, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 9, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.36, Rules used = {4141, 1975, 477, 582, 523, 217, 206, 377, 203} \[ \frac{\left (3 a^2-6 a b-b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{8 \sqrt{b} f}-\frac{a^{3/2} \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{f}+\frac{b \tan ^3(e+f x) \sqrt{a+b \tan ^2(e+f x)+b}}{4 f}+\frac{(5 a+b) \tan (e+f x) \sqrt{a+b \tan ^2(e+f x)+b}}{8 f} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[e + f*x]^2)^(3/2)*Tan[e + f*x]^2,x]

[Out]

-((a^(3/2)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/f) + ((3*a^2 - 6*a*b - b^2)*ArcTanh[
(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(8*Sqrt[b]*f) + ((5*a + b)*Tan[e + f*x]*Sqrt[a + b + b
*Tan[e + f*x]^2])/(8*f) + (b*Tan[e + f*x]^3*Sqrt[a + b + b*Tan[e + f*x]^2])/(4*f)

Rule 4141

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[((d*ff*x)^m*(a + b*(1 + ff^2*x^2)^(n/2))^p)/(1 + ff^
2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && IntegerQ[n/2] && (IntegerQ[m/2] ||
EqQ[n, 2])

Rule 1975

Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*ExpandToSum[u, x]^p*ExpandToSum[v, x]^q
, x] /; FreeQ[{e, m, p, q}, x] && BinomialQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0]
&&  !BinomialMatchQ[{u, v}, x]

Rule 477

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(d*(e*x)
^(m + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1))/(b*e*(m + n*(p + q) + 1)), x] + Dist[1/(b*(m + n*(p + q) + 1
)), Int[(e*x)^m*(a + b*x^n)^p*(c + d*x^n)^(q - 2)*Simp[c*((c*b - a*d)*(m + 1) + c*b*n*(p + q)) + (d*(c*b - a*d
)*(m + 1) + d*n*(q - 1)*(b*c - a*d) + c*b*d*n*(p + q))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && N
eQ[b*c - a*d, 0] && IGtQ[n, 0] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 582

Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
 x_Symbol] :> Simp[(f*g^(n - 1)*(g*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(b*d*(m + n*(p + q
+ 1) + 1)), x] - Dist[g^n/(b*d*(m + n*(p + q + 1) + 1)), Int[(g*x)^(m - n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*
f*c*(m - n + 1) + (a*f*d*(m + n*q + 1) + b*(f*c*(m + n*p + 1) - e*d*(m + n*(p + q + 1) + 1)))*x^n, x], x], x]
/; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && IGtQ[n, 0] && GtQ[m, n - 1]

Rule 523

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \tan ^2(e+f x) \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x^2 \left (a+b \left (1+x^2\right )\right )^{3/2}}{1+x^2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{\operatorname{Subst}\left (\int \frac{x^2 \left (a+b+b x^2\right )^{3/2}}{1+x^2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{b \tan ^3(e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{4 f}+\frac{\operatorname{Subst}\left (\int \frac{x^2 \left ((a+b) (4 a+b)+b (5 a+b) x^2\right )}{\left (1+x^2\right ) \sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{4 f}\\ &=\frac{(5 a+b) \tan (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{8 f}+\frac{b \tan ^3(e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{4 f}-\frac{\operatorname{Subst}\left (\int \frac{b (a+b) (5 a+b)-b \left (3 a^2-6 a b-b^2\right ) x^2}{\left (1+x^2\right ) \sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{8 b f}\\ &=\frac{(5 a+b) \tan (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{8 f}+\frac{b \tan ^3(e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{4 f}-\frac{a^2 \operatorname{Subst}\left (\int \frac{1}{\left (1+x^2\right ) \sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}+\frac{\left (3 a^2-6 a b-b^2\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{8 f}\\ &=\frac{(5 a+b) \tan (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{8 f}+\frac{b \tan ^3(e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{4 f}-\frac{a^2 \operatorname{Subst}\left (\int \frac{1}{1+a x^2} \, dx,x,\frac{\tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{f}+\frac{\left (3 a^2-6 a b-b^2\right ) \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{\tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{8 f}\\ &=-\frac{a^{3/2} \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{f}+\frac{\left (3 a^2-6 a b-b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{8 \sqrt{b} f}+\frac{(5 a+b) \tan (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{8 f}+\frac{b \tan ^3(e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{4 f}\\ \end{align*}

Mathematica [C]  time = 6.58653, size = 703, normalized size = 4.23 \[ \frac{e^{i (e+f x)} \cos ^3(e+f x) \sqrt{4 b+a e^{-2 i (e+f x)} \left (1+e^{2 i (e+f x)}\right )^2} \left (\frac{-3 a^2 \log \left (\frac{4 f \left (\sqrt{b} \left (-1+e^{2 i (e+f x)}\right )-i \sqrt{a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}\right )}{\left (3 a^2-6 a b-b^2\right ) \left (1+e^{2 i (e+f x)}\right )}\right )+6 a b \log \left (\frac{4 f \left (\sqrt{b} \left (-1+e^{2 i (e+f x)}\right )-i \sqrt{a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}\right )}{\left (3 a^2-6 a b-b^2\right ) \left (1+e^{2 i (e+f x)}\right )}\right )+b^2 \log \left (\frac{4 f \left (\sqrt{b} \left (-1+e^{2 i (e+f x)}\right )-i \sqrt{a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}\right )}{\left (3 a^2-6 a b-b^2\right ) \left (1+e^{2 i (e+f x)}\right )}\right )+4 i a^{3/2} \sqrt{b} \log \left (\sqrt{a} \sqrt{a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}+a e^{2 i (e+f x)}+a+2 b\right )-4 i a^{3/2} \sqrt{b} \log \left (\sqrt{a} \sqrt{a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}+a e^{2 i (e+f x)}+a+2 b e^{2 i (e+f x)}\right )-8 a^{3/2} \sqrt{b} f x}{\sqrt{b} \sqrt{a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}}-\frac{i \left (-1+e^{2 i (e+f x)}\right ) \left (5 a \left (1+e^{2 i (e+f x)}\right )^2-b \left (-6 e^{2 i (e+f x)}+e^{4 i (e+f x)}+1\right )\right )}{\left (1+e^{2 i (e+f x)}\right )^4}\right ) \left (a+b \sec ^2(e+f x)\right )^{3/2}}{2 \sqrt{2} f (a \cos (2 e+2 f x)+a+2 b)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sec[e + f*x]^2)^(3/2)*Tan[e + f*x]^2,x]

[Out]

(E^(I*(e + f*x))*Sqrt[4*b + (a*(1 + E^((2*I)*(e + f*x)))^2)/E^((2*I)*(e + f*x))]*Cos[e + f*x]^3*(((-I)*(-1 + E
^((2*I)*(e + f*x)))*(5*a*(1 + E^((2*I)*(e + f*x)))^2 - b*(1 - 6*E^((2*I)*(e + f*x)) + E^((4*I)*(e + f*x)))))/(
1 + E^((2*I)*(e + f*x)))^4 + (-8*a^(3/2)*Sqrt[b]*f*x + (4*I)*a^(3/2)*Sqrt[b]*Log[a + 2*b + a*E^((2*I)*(e + f*x
)) + Sqrt[a]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]] - (4*I)*a^(3/2)*Sqrt[b]*Log[a + a*
E^((2*I)*(e + f*x)) + 2*b*E^((2*I)*(e + f*x)) + Sqrt[a]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*
x)))^2]] - 3*a^2*Log[(4*(Sqrt[b]*(-1 + E^((2*I)*(e + f*x))) - I*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)
*(e + f*x)))^2])*f)/((3*a^2 - 6*a*b - b^2)*(1 + E^((2*I)*(e + f*x))))] + 6*a*b*Log[(4*(Sqrt[b]*(-1 + E^((2*I)*
(e + f*x))) - I*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2])*f)/((3*a^2 - 6*a*b - b^2)*(1 +
E^((2*I)*(e + f*x))))] + b^2*Log[(4*(Sqrt[b]*(-1 + E^((2*I)*(e + f*x))) - I*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(
1 + E^((2*I)*(e + f*x)))^2])*f)/((3*a^2 - 6*a*b - b^2)*(1 + E^((2*I)*(e + f*x))))])/(Sqrt[b]*Sqrt[4*b*E^((2*I)
*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]))*(a + b*Sec[e + f*x]^2)^(3/2))/(2*Sqrt[2]*f*(a + 2*b + a*Cos[2*e
 + 2*f*x])^(3/2))

________________________________________________________________________________________

Maple [C]  time = 0.402, size = 2002, normalized size = 12.1 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(f*x+e)^2)^(3/2)*tan(f*x+e)^2,x)

[Out]

1/8/f/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*sin(f*x+e)*(6*sin(f*x+e)*cos(f*x+e)^4*2^(1/2)*(1/(a+b)*(I*cos(f*
x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b
^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2
)+a-b)/(a+b))^(1/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*
I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*a^2-12*sin(f*x+e)*cos(f*x+e)^4*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(
1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)
*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1
/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2
)+a-b)/(a+b))^(1/2))*a*b-2*sin(f*x+e)*cos(f*x+e)^4*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^
(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*
x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),1/
(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/
2))*b^2+5*sin(f*x+e)*cos(f*x+e)^4*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e
)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*
x+e)))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/
2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*a^2+6*sin(f*x+e)*cos(f*x+e)^4*2^(1/2)*(1/(a+b)*(I*cos(f*
x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b
^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)
+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*a*b+si
n(f*x+e)*cos(f*x+e)^4*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(
f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)
*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/
2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*b^2-16*sin(f*x+e)*cos(f*x+e)^4*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2
)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^
(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b
))^(1/2)/sin(f*x+e),-1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*
b^(1/2)+a-b)/(a+b))^(1/2))*a^2+5*cos(f*x+e)^5*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a^2-cos(f*x+e)^5*((2*I*a
^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b-5*cos(f*x+e)^4*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a^2+cos(f*x+e)^4*(
(2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b+7*cos(f*x+e)^3*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b-cos(f*x+
e)^3*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^2-7*cos(f*x+e)^2*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b+co
s(f*x+e)^2*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^2+2*cos(f*x+e)*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^
2-2*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^2)*((b+a*cos(f*x+e)^2)/cos(f*x+e)^2)^(3/2)/(-1+cos(f*x+e))/(b+a*
cos(f*x+e)^2)^2/cos(f*x+e)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}} \tan \left (f x + e\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(f*x+e)^2)^(3/2)*tan(f*x+e)^2,x, algorithm="maxima")

[Out]

integrate((b*sec(f*x + e)^2 + a)^(3/2)*tan(f*x + e)^2, x)

________________________________________________________________________________________

Fricas [B]  time = 4.39122, size = 3929, normalized size = 23.67 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(f*x+e)^2)^(3/2)*tan(f*x+e)^2,x, algorithm="fricas")

[Out]

[1/32*(4*sqrt(-a)*a*b*cos(f*x + e)^3*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4
 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7
*a^2*b^2 - a*b^3)*cos(f*x + e)^2 + 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*
a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^
2 + b)/cos(f*x + e)^2)*sin(f*x + e)) - (3*a^2 - 6*a*b - b^2)*sqrt(b)*cos(f*x + e)^3*log(((a^2 - 6*a*b + b^2)*c
os(f*x + e)^4 + 8*(a*b - b^2)*cos(f*x + e)^2 - 4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(b)*sqrt((a*c
os(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) + 8*b^2)/cos(f*x + e)^4) + 4*((5*a*b - b^2)*cos(f*x + e)^2 + 2
*b^2)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(b*f*cos(f*x + e)^3), 1/16*(2*sqrt(-a)*a*b*cos
(f*x + e)^3*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*
cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x
 + e)^2 + 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x
+ e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*si
n(f*x + e)) + (3*a^2 - 6*a*b - b^2)*sqrt(-b)*arctan(-1/2*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*
sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a*b*cos(f*x + e)^2 + b^2)*sin(f*x + e)))*cos(f*x + e)^3 + 2*((5*
a*b - b^2)*cos(f*x + e)^2 + 2*b^2)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(b*f*cos(f*x + e)
^3), 1/32*(8*a^(3/2)*b*arctan(1/4*(8*a^2*cos(f*x + e)^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 + (a^2 - 6*a*b + b^2)*c
os(f*x + e))*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x + e)^4 - a^2*b + a*b^2 - (a^3
 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x + e)))*cos(f*x + e)^3 - (3*a^2 - 6*a*b - b^2)*sqrt(b)*cos(f*x + e)^3*log((
(a^2 - 6*a*b + b^2)*cos(f*x + e)^4 + 8*(a*b - b^2)*cos(f*x + e)^2 - 4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x +
e))*sqrt(b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) + 8*b^2)/cos(f*x + e)^4) + 4*((5*a*b - b^
2)*cos(f*x + e)^2 + 2*b^2)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(b*f*cos(f*x + e)^3), 1/1
6*(4*a^(3/2)*b*arctan(1/4*(8*a^2*cos(f*x + e)^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 + (a^2 - 6*a*b + b^2)*cos(f*x +
 e))*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x + e)^4 - a^2*b + a*b^2 - (a^3 - 3*a^2
*b)*cos(f*x + e)^2)*sin(f*x + e)))*cos(f*x + e)^3 + (3*a^2 - 6*a*b - b^2)*sqrt(-b)*arctan(-1/2*((a - b)*cos(f*
x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a*b*cos(f*x + e)^2 + b^2)*
sin(f*x + e)))*cos(f*x + e)^3 + 2*((5*a*b - b^2)*cos(f*x + e)^2 + 2*b^2)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x +
 e)^2)*sin(f*x + e))/(b*f*cos(f*x + e)^3)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{\frac{3}{2}} \tan ^{2}{\left (e + f x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(f*x+e)**2)**(3/2)*tan(f*x+e)**2,x)

[Out]

Integral((a + b*sec(e + f*x)**2)**(3/2)*tan(e + f*x)**2, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}} \tan \left (f x + e\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(f*x+e)^2)^(3/2)*tan(f*x+e)^2,x, algorithm="giac")

[Out]

integrate((b*sec(f*x + e)^2 + a)^(3/2)*tan(f*x + e)^2, x)